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Abstract-—The author’s modification of the theories by van Wijk, Vos and van Stralen, by Scriven and by
Bruijn, concerning the growth rate of free spherical vapour bubbles in uniformly superheated binary
mixtures is extended to the more complex cases of bubbles generated on a heating surface and of time-
dependent liquid superheating, leading to a new description of the mechanism of nucleate boiling.

The heat flow to the bubble required for vaporization during rapid initial bubble growth has been derived
from the excess enthalpy of the equivalent conduction layer at the heating surface. This thermal boundary
layer is periodically pushed away from the wall due to the generation of succeeding bubbles on nuclei.
The behaviour of the uniform superheating of the fluctuating microlayer has been established similar to a
relaxation phenomenon.

The various interpretations of rapid temperature dips, occurring both in nucleate boiling and film
boiling, at the heating surface due to initial vapour formation have been discussed and the proposed
mechanism has also been checked with schlieren photographs taken from the literature.

The experimental growth of bubbles adhering to a platinum heating wire in water, and in water-methyl-

ethylketone and water—1-butanol mixtures, is in quantitative agreement with the new theory.

NOMENCLATURE

< (liquid) specific heat at constant
a, k/pic, (liquid) thermal diffusivity pressure [J/kg degC];
[m?/s]; C, heat capacity of relaxation micro-
A, area of surface [m?]; layer [J/degC];
Ay, 4nR?, area of spherical bubble sur- Ci, = R/8t*, bubble growth constant,
face [m?]; for relatively large liquid super-
A,, 4nbR?, area of spherical heating seg- heatings, C, = 24 x 10~* for water,
ment surrounding a part of the C, = 6 x 107* for 41 wt. %
bubble boundary [m?]; methylethylketone, C, = 18 x 107*
b, eR; /C1Soty o dimensionless for 1-5 wt. % 1-butanol and C, =
bubble growth parameter; 21 x 10~* for 60 wt. % 1-butanol,
by, corrected dimensionless bubble all at atmospheric pressure [m/s?
growth parameter ; degC];
b*, dimensionless microlayer para- C,, = R/t*,bubble growth factor [m/s*];
meter for a spherical segment ; b* = d, instantaneous thickness of relaxa-
b for a sphere; tion microlayer, or of equivalent
B, (3X1 + cos ®) = dimensionless wett- conduction layer [p or m];
ing parameter for a spherical seg- D, mass diffusivity of more volatile
ment ; component in less volatile com-
ponent [m?/s];
tDoctor of Physics, Principal Research Officer. D,, diameter of heating wire [m] 5
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= §,,constant ofintegration[degC];
= —38, constant of integration
[degC];

= 4nb*C3 92 p,l/p,c, constant
[m?/si];

1, or m/2, constant;

1/u,, constant [1/s%];

k/pcdqy(ma)?, constant [1/st];

(kpc)* [I/s'm degCl;

gravitational acceleration [m/s?];
vaporized mass fraction for indi-
vidual bubble, or mass ratio of
vapour in bubble and corresponding
region of influence on relaxation
microlayer;

(Cy,m/Cy, )G = vaporized mass frac-
tion for individual bubble in binary
mixture, or mass ratio of bubble in
mixture and corresponding region
of influence on relaxation micro-
layer in pure less volatile component,
G* = G in pure liquids;

= (A4,/A,)G, vaporized mass fraction
for one active nucleus with respect
to entire area A,, of heating surface;
= mG', vaporized mass fraction for
all active nuclei with respect to
entire area A, of heating surface,
Gmax = Grmax

Grashof number ;

coefficient of heat transfer [W/m?
degC];

= k/(rmat)}, coefficient of heat trans-
fer for conduction with sudden
change in surface temperature
[W/m? degC];

= 2BR*, height of spherical bubble
segment [m];

height of thermal layer at part of
bubble boundary, H* = 2b*R* for
spherical segment, H* = 2bR for a
sphere [m];

= (4n/3)p, (R} — R3? = instan-
taneous excess enthalpy of removed
part of relaxation microlayer during
bubble growth at heating surface {J] ;

Nu,
Pr,

q,

-~
-

R*,

Ry,

(liquid) thermal conductivity [W/m
degCl;

= y/x = equilibrium constant of
more volatile component in binary
mixture (ratio of mass fractions);
latent heat of vaporization [J/kg];
length of heating wire [m];
dimensionless number of active
nuclei generating vapour bubbles on
entire area A, of heating surface;
number of active nuclei on unit area
of heating surface, or nuclei density
[m™7;

mean error;

molecular weight of more volatile
component in binary mixture;
molecular weight of less volatile
component in binary mixture;

= 3 (for ordinary nuclei), or 7 (for
complex nuclei), dimensionless con-~
stant in previous bubble growth
equation;

Nusseit number;

Prandti number;

= ®/A = rate of heat flow through
unit area, or heat flux density
[W/m?];

distance to bubble centre [m];
instantaneous radius of spherical
vapour bubble, or equivalent radius
of sphere with equal volume for a
spherical segment and for a rotation
ellipsoid (in case of vibrations) [m];
radius of spherical bubble segment
[m];

equilibrium bubble radius; R, =
26T/p,18, for bubbles generated at
heating surface [m];

= R(t,), (equivalent) bubble radius
at the instant t, of breaking away
from heating surface [m];

= R*(t,), radius of spherical bubble
segment at instant t, [m];

Reynolds number;

standard deviation;

time elapsed since initial bubble
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formation during adherence time, or
since bubble departure during delay
time [s];

instant at which bubble is breaking
away from heating surface, or de-
parture time [s];

delay, or waiting time between for-
mation of succeeding bubble on
same nucleus and bubble departure
[sh;

absolute boiling point, or saturation
temperature at ambient pressure
[’K];

absolute boiling temperature of
liquid at bubble boundary in binary
liquid mixture [°K};

absolute boiling temperature of
original liquid in binary mixture
[’K];

absolute dew temperature of satu-
rated vapour in binary mixture,
T() = T(x) [K];

= T(y) — T(xo) = T(x) = T(xo),
temperature difference between dew
temperature of vapour in bubbles
and boiling temperature of original
liquid in binary mixture, or increase
in temperature of liquid at bubble
boundary with respect to original
liquid; AT = 0 for pure liquids and
for azeotropic mixture [degC];

= thu, = tiu, = 3 [*];
propagation velocity of capillary
waves [m/s];

= 4nbR*d = volume of relaxation
microlayer [m?];

= (n/3) H*3R* — H) = (@4=n/3)
B*(3 — 2B)(R*)*, volume of spherical
bubble segment [m?];

= (4n/3) R} = (167/3) 6*(T/p,18,),
energy required for creation of equi-
librium bubble [J};

= xo/{l + (K — 1)G,}, mass
fraction of more volatile component
in liquid at bubble boundary in
binary mixture;

Xos

Y

z,

mass fraction of more volatile com-
ponent in original liquid in binary
mixture;

mass fraction of more volatile com-
ponent in vapour of binary mixture ;
= 3D, + 2B — )R}, cylinder
radius of maximal intersection with
vapour bubbles [m].

Greek letters

a,

= arc cos (2B — 1), contact angle
characterizing the wetting of the
heating surface;

= R/2Aat)* = C,/2a*, dimensionless
bubble growth coefficient ;

= b*/B, dimensionless constant;
thickness of diffusion microlayer in
binary mixture [p or m];

= 1 — {p,/p,), dimensionless con-
stant, which establishes effect of
radial convection on bubble growth
for small liquid superheatings;
instantaneous uniform superheat-
ing of relaxation microlayer [degC];
superheating of heating surface, or
initial maximum superheating of
relaxation microlayer surrounding
part of bubble boundary [degC];
superheating of heating surface at
transition between convection and
nucleate boiling [degC];

= 8 — (8o/c) [degC];

superheating of contact surface be-
tween two semi-infinite bodies
[degC];

uniform superheating of bulk liquid,
[degCl;

wavelength of capillary waves at
Leidenfrost-point [m];

= (a/D)*, dimensionless constant re-
lating heat conduction and mass
diffusion;

= 1/(t; + t,), frequency of bubble
formation on nucleus {1/s];

= (2/u,)u, dimensionless integration
variable;
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density [kg/m?];

liquid density [kg/m®];

saturated vapour density [kg/m®];
surface tension constant [kg/s*];

= p,cd/h,, relaxation time, or time
constant [s];

= (p,¢/p, (8¢ — AT), dimensionless
bubble growth function according
to Scriven’s theory for binary liquid
mixtures; ¢ — 2> = C3/2a for
p — 0 (i.e. bubble growth at very
small superheatings is increased due
to radial convection for ¢ ~ 1);
¢ = (@3N = (W/129¥Cy/a?) for
relatively large f (i.e. for moderate
superheatings);

= py(xo — X)/p2)y — X) = (p1/P2)Ga.
dimensionless diffusion function ac-
cording to Scriven’s theory for binary
mixtures;

= rate of heat flow [W].

value for individual bubble (mostly
omitted), or (for heat flux density)
applying to direct vapour formation
at heating surface;

(for heat flux density) bubble-in-
duced contribution, or difference
between total heat flux and convec-
tion contribution, ¢, , = ¢, —
Gw.cor v, b < Gw,bi in mixture, g,, , =
d...»; in pure less volatile component :
value for complex nuclei in binary
mixture;

(for heat-flux density) convection
contribution;

value for mass diffusion;
experimental value;

value for heat diffusion;

applying to region of influence of
individual bubble;

value in binary mixture;

value for mole fractions;

value for peak flux conditions;
maximum value (exception, Ry);

p, value in less volatile pure compo-
nent;

t, theoretical value;

w, value for heating surface.

Numerical values for water at atmospheric
boiling point

a = 169 x 10”8 m?/s;

c = 4216 }/kg degC;

D = 99 x 107 m?/s for 1-butanol in
water at 97°C;

g = 981 m/s?;

k = 0-6825 W/m degC;

l = 22:56 x 10° J/kg;

R, =33 x 107%/3, m;

B = 1220C,;

£ = (9994 ;

U, = 131 for 1-butanol in water at
97°C:

P4 = 9584 kg/m?;

P2 = 0-598 kg/m?;

palipc = 03334 degC;

o = 0-0587 kg/s?.

1. THE PRESENT KNOWLEDGE OF NUCLEATE
BOILING

1.1 Boiling curves
HEAT FLUX DENSITY ¢, as a function of the
temperature difference (“superheating”) 3, be-
tween a heating surface and the bulk of a boiling
liquid, is commonly called a “boiling curve”.
A boiling curve consists of a region of natural
{or free) convection and a region of nucleate
boiling, which occur at moderate superheatings.
The number of active sites (“nuclei”), generating
vapour bubbles in the region of nucleate boiling
increases with increasing superheating (Fig. 1).
Vapour bubbles coalesce frequently in the
neighbourhood of the heating surface, if the
superheating exceeds a critical value (generally
10-50 degC). The heating surface is then covered
with a more or less coherent layer of vapour
(““Leidenfrost-phenomenon™). This results in a
thermal insulation; the heat flux decreases
(“‘transition boiling”), causing the temperature
to increase.
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At higher temperatures the heat flux density
will again increase with increasing temperature
partly due to the contribution of radiant flux.
Often, however, burnout at the melting point
of the heating material is reached before a
stationary state is obtained in the region of
“film boiling”.

1.2 The peak flux

The study of the maximum heat flux density
in nucleate boiling (“peak flux”) occurring in a
pure liquid is very important for practical
utilizations. A large number of investigations
have been carried out with the purpose to
increase the peak flux. A favourable effect
occurs due to intensive liquid agitation (Pramuk
and Westwater [1, 70]), subcooling of the bulk
liquid (Nukiyama [2] and van Wijk and van
Stralen [3-5]), preferably in combination with
the application of forced convection in linear
flow (Schweppe and Foust [6], McAdams et al.
[7, 8], Kreith and Summerfield [9] and Gunther
[10]), vortex flow (Gambill and Greene [11]),
application of an electrostatic field (Senftleben
[12], Bonjour, Verdier and Weil [13]), use of
an oxidized heating surface (Farber and Scorah
[14], van Stralen [15] and Averin [16]), and
increase of pressure up to one-third of the
critical pressure (Cichelli and Bonilla [17] for
organic liquids, and Addoms [18], van Stralen
[15, 19] and Kazakova [20] for water). The
design of most of these experiments is empirical
resulting in correlations of dimensionless groups
of thermal and flow quantities predicting the
effect only of the special parameter investigated.
Some of these correlations for the region of
nucleate boiling are an extension of the well-
known convection equations Nu(Gr, Pr) for
free convection or Nu(Pr, Re) for forced con-
vection, eventually (more successful) with the
characteristic length taken as the bubble dia-
meter at departure and the characteristic velocity
as the initial bubble growth rate.

The observed increase of the peak flux is in
general mainly due to an appreciable reduction
of the direct vapour formation in the neighbour-
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hood of the heating surface, whence the onset of
film boiling is delayed. This underlies also the
occurrence of a maximum peak flux at a certain
{low) concentration of the more volatile com-
ponent in binary (or ternary) liquid mixtures
boiling at various pressures, up to the critical
[21-24, 15, 19, 25, 5]. For instance, in water—
methylethylketone boiling at atmospheric pres-
sure, an extremely high maximum occurs at
4-1 wt. % methylethylketone, which amounts to
2'5 times the peak flux in pure water (Fig. 1).

180,

160

140

0% -

20

40
— 3, (degC)

FiG. 1. Water—methylethylketone. Boiling curves for convec-

tion and nucleate boiling to water and to 4.1 (), 20 (.

52 (A), 88-5 (@) and 100 () wt. % methylethylketone, all

at atmospheric pressure.

Figures by curves for 0, 41 and 1009, methylethylketone

denote number of active nuclei generating vapour bubbles on
1 cm? of a horizontal platinum heating surface.

50
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Increased peak fluxes in subcooled binary
mixtures were investigated by van Stralen
[4, 5], for free convection and by Carne [26] for
forced convection.

1.3 Recent trends

Recently, new information on nucleate boiling
has become available from a number of valuable
fundamental contributions, some of which will
be discussed more extensively below:

(1) Growth rates of free vapour bubbles in
uniformly superheated liquids could be
treated theoretically (Forster and Zuber
[27] and Plesset and Zwick [28]), even
for the rather complex case of binary
liquid mixtures (van Wijk, Vos and
van Stralen [22], Bruijn [29] and Scriven
[30]). Van Stralen [31] showed that the
occurrence of a slowing down of bubble
growth at the same low concentration
of the more volatile component, at which
the maximum peak flux has been ob-
served previously, and which had been
predicted by van Wijk, Vos and van
Stralen [22], is in good agreement with
Scriven’s theory.

The growth rate of a bubble in a pure
component is not a hydrodynamic prob-
lem but depends only on the heat flow
towards the bubble boundary to satisfy
the heat requirement of evaporation.
In mixtures, heat diffusion is linked with
mass diffusion of the more volatile com-
ponent, as this component is rapidly
exhausted in the liquid near the bubble.
In addition, Scriven [30] established the
effect of radial convection resulting from
unequal phase densities, by which bubble
growthrates at small liquid superheatings
are increased considerably.

(ii) Experimental investigations on the
growth rate of free or released bubbles
using high speed photography on pure
liquids (Jakob [32, 33], Dergarabedian
[34] and van Wijk and van Stralen [35]
on water and Wanninger [36] on propane

(iii)

(iv)

(v)

at high pressures) and on binary mix-
tures (Benjamin and Westwater [38, 71]
on water—ethyleneglycol, van Wijk and
van Stralen [35] on water—-methylethyl-
ketone and van Stralen [39] on water-1-
butanol) were in good agreement with
theory. The reader is referred to Section
1.5 and to the literature for a chrono-
logical survey, for a description of the
experimental setup and for details con-
cerning the photographic technique [ 35,
39, 4,31].

Temperature fluctuations in coincidence
with periodic initial bubble formation
have been observed at the contact area
between the heating surface and the
adhering thermal liquid boundary layer.
Different interpretations of this pheno-
menon have created much controversy
about the wunderstanding of the
mechanism of nucleate boiling, cf. Sec-
tion 1.4.

Hsu and Graham [40, 41] (cf also
Leppert and Pitts [42]), Béhar and
Séméria [43] and Brauer [44] made
observations of the thermal boundary
layer adhering to the heating surface in
water from (colour) schlieren photo-
graphs. An initially rapidly growing
vapour bubble at the wall removed this
thermal microlayer locally away from
the surface.

The extremely important results of (iv)
are in fair agreement with the new theory
presented here (Section 1.6), which was
deduced originally from high-speed mo-
tion pictures on bubble growth: the
excess enthalpy of the thermal micro-
layer, which is pushed away from the
surface by the growing bubble, is entirely
used to supply latent heat for direct
vaporization in pure liquids, but only
partly so in binary mixtures.

1.4 Temperature fluctuations

Sudden dips of the local temperature occur
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periodically at the area of contact between the
heating surface and a boiling liquid, both in the
regions of nucleate boiling and film boiling.
Observations could be made by using a special
thermocouple device with low response time,
according to Bendersky [45]. Moore and Mesler
[46] studied this effect in water (nucleate
boiling), Madsen and Bonilla [47] in liquid
metals (nucleate boiling), Rogers and Mesler
[48] in water (nucleate boiling), Madsen [49]
in water (both nucleate boiling and film boiling),
and Bonnet, Macke and Morin [50] in water
(nucleate boiling). The onset instant of the
rapid temperature drop is shown to coincide
with the high initial growth rate of a vapour
bubble, which is generated on the nearest
active nucleus at the heating surface, according
to Bonnet, Macke and Morin [50] and to
Rogers and Mesler [48] using a synchroniza-
tion device of both phenomena. The local
temperature increases to the original super-
heating shortly before bubble departure and
during the delay time, until the succeeding
bubble is generated on the same nucleus. The
shape of the temperature vs. time curves may
sometimes be more complex since response is
given then to fluctuations due to a superposition
of bubbles which are growing simultaneously
on various neighbouring nuclei.

The interpretation of the observed tempera-
ture fluctuations, which is highly important
for the understanding of the mechanism of
nucleate boiling and possibly also for the
explanation of material fatigue in boiling, is
rather difficult. Moore and Mesler [46] stated
the hypothesis, that a very thin (order of magni-
tude of 1 y) liquid microlayer between a vapour
bubble and the heating surface exists and
evaporates rapidly, thus being responsible for
the calculated very high heat flux densities
during initial bubble growth. Contrarily, Mad-
sen [49] assumed the existence of a considerably
thicker liquid microlayer with uniform tempera-
ture at the bottom of the bubble, which is heated
periodically during the delay time and is cooled
during bubble growth. Consequently, much
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lower local heat flux densities are predicted,
and the heat transfer mechanism breaks up in
two stages: (i) heat exchange between surface
and cooled microlayer, and (ii) exchange of
excess enthalpy between superheated micro-
layer and growing vapour bubble. The thickness
of Madsen’s “relaxation’ microlayer is expected
to be approximately 25 y, ie. 1/c3, times the
thickness of Moore and Mesler’s “‘evaporation™
microlayer, in good agreement with Madsen’s
values, cf. Section 3.19.

In the ‘“delay time” (or ‘“‘waiting period”
between departure of the bubble and initial
formation of the succeeding bubble on the same
active site) colder liquid of the bulk (slightly
superheated above saturation temperature) is
replacing the original highly superheated ther-
mal boundary layer at the heating surface.

Stephan [51, 52] and Kast [53] describe the
heat transmission from the surface during the
delay time. Stephan is using Pohlhausen’s
equation [54] which, however, gives inaccurate
values as the direction of the liquid flow is
uncertain. Most other workers (Han [55], cf.
also Rohsenow [56], and Bonnet, Macke and
Morin [50]) make use of the transient conduc-
tion equation for a semi-infinite body, whence
the heat flux density at the surface is given by:

KSo _ fi (nkpo)?
(rat)t ~ n ot} %o 1)

We shall show, that the factor f; =1 for
constant temperature (a step change in tempera-
ture at the wall), which is allowed for short
periods only, according to Hudson and Bankoff
[57]. Viz, the semi-infinite liquid and heating
bodies {with initial uniform temperature T and
T + 9, respectively) are assumed to come into
contact at the instant ¢t = 0. The superheating
of the contact surface approximates a constant
value 95 :

qw=f1

. F,
O_FW+F9°
and
F . F, F

=i = F r F
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where F = (kpc)! and F, = (k,p,c,)}t refer
to the liquid and to the heating material,
respectively. These equations are for F < F,
which case applies here, simplified to:

g =9,
and

F
=9
qw (nt).% 0

i.e. equation (1) with f; = 1.

The factor f; = n/2 for constant heat flux
density at the wall (sudden start of heating at
t = 0, cf. Carslaw and Jaeger [ 58]). The different
results of the calculations by the various
workers is principally based on the interpreta-
tion of the meaning of the thermal quantities
kand a = k/pcinequation (1). Moore and Mesler
[46] and Bonnet, Macke and Morin [50] take
k,/a,?}, ie. the value for the semi-infinite heating
body (stainless steel), thus obtaining very high
constant local heat flux values from the surface
during bubble growth at the wall; contrarily,
Han [55] (cf. also Rohsenow [56]) lets this
quantity refer to the semi-infinite bulk liquid,
whence much smaller local heat flux densities
are obtained.

We shall show here that the last statement is
correct, assuming pure conduction, thus neglect-
ing convection on account of the short duration
(approximately 1-10 ms) of the temperature
dips. For stainless steel (all data are given at a
temperature of 100°C):

k, = 168 W/m degC,
p., =79 x 10* kg/m?,

and
¢,, = 503 J/kg degC,
whence
(nk,,p,cn)t = 145 x 10* J/s*m? degC:
for platinum:

k,, = 71:2 W/m degC,
P, = 21-4 x 10* kg/m?,
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and
¢, = 138 J/kg degC,
whence
(nk,0,c,)F = 2:56 x 10* I/stm? degC;
for copper

k, = 381 W/m degC,
Py = 88 x 10° kg/m?,

and
¢,, = 377 J/kg degC,
whence

(nk,p.c,) = 6:45 x 10*J/s*m? degC;

for water
k = 0-683 W/m degC,
p = 958 kg/m*,
and
¢ = 4216 J/kg degC,
whence

(mkpc)t = 0297 x 10* J/s*m? degC,

a considerably smaller value, whence the con-
dition F < F, is satisfied here.

A maximum temperature dip of 15 degC,
e.g. which is reached in 10 ms, corresponds to
constant heat flux density at the surface of
109 x 10° W/m? (stainless steel), 193 x 10°
W/m? (platinum), 49-4 x 10° W/m? (copper)and
223 x 10° W/m? (water). The temperature dip
at the surface of contact between two touching
semi-infinite bodies 1 and 2 of originally
different uniform temperatures is, in the absence
of heat sources, inversely proportional to
{(kpc)y/(kpc),}E, on account of continuity of
the heat flux density at the contact surface.

Consequently, for steam bubbles generated on
a copper surface with a superheating 3, =
157 degC, the ratio of the corresponding
temperature dips at the surface in the water and
the copper amounts to 6-45/0:297 = 21-7. If the
actually measured temperature dip of 15-0 degC
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should refer to the copper, a corresponding dip
of 325 degC must occur in the water. This is
impossible as this value cannot exceed .
It follows, that the measured temperature dip
refers mainly to the temperature of the bedy with
lowest contact coefficient kpc, ie. the liquid
here. The same result has been obtained experi-
mentally by Madsen [49]. Maximum tempera-
ture dips in copper and stainless steel with
boiling water should be in the ratio 1-45/6-45 =
0-225. Actually no perceptible differences be-
tween the maximum dips occurred when the
copper heating plate was substituted for the
stainless steel plate.

The problem discussed here is highly im-
portant for the determination of the fraction
of the total heat flux density which is trans-
ferred directly to the bubbles during adherence
to the heating wall (or the ratio of the direct
vapour formation to the total vapour forma-
tion). The estimates for water vary from a
fraction of the order of magnitude of 10~2 to
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107! (Jakob [32, 33]), to 0-80 at peak flux
conditions (Rallis and Jawurek [59]), and even
to 1-00 (Bonnet, Macke and Morin [50]. The
latter estimate must be incorrect, however, as a
subsequent growth of released vapour bubbles
is occurring during their rise through the
slightly superheated bulk liquid (Jakob [32, 33],
van Wijk and van Stralen [35] and van Stralen

[39)).

1.5 Bubble growth in binary mixtures

The study of binary liquid mixtures has
several advantages over pure liquids as the
direct vapour formation at the heating surface
can be reduced appreciably due to a slowing
down of bubble growth and corresponding
decreased departure size. As a consequence,
higher nucleate boiling peak flux densities
occur at a certain (low) concentration of the
more volatile component, which can be derived
from equilibrium data [22, 24, 25, 15, 19, 60,
4,5,31], cf. Fig. 2 for the system water—1-butanol.

200 T
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FiG. 2. Water—1-butanol. Peak flux as a function of composition at
atmospheric pressure. Measurements carried out with same plati-
num heating wire are represented by same figures. Az = azeotrope.
Dotted vertical lines indicate boundaries of region of demixing at
azeotropic boiling point. Bottom curves represent AT/G,, cf. Part II.
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In addition, the study of mixtures is advan-
tageous for a second reason: the region of
isolated bubbles (cf. Gaertner [61] and Zuber
[62]) in “positive” mixtures-——in which the
more volatile component has the lowest surface
tension—is extended nearly to peak flux condi-
tions on account of a diminished tendency for
bubble coalescence due to the Marangoni-effect
(Hovestreijdt [63]). Hence, experimental data
on bubble growth, which are obtained at
moderate nucleate boiling heat fluxes are also
representative for higher values.

1.6 A new theory of nucleate boiling

The growth rate of released, free vapour
bubbles has been studied previously, both
experimentally and theoretically. Initial growth
rates of bubbles generated at a nucleus on a
heating surface are investigated in the present
work. As a consequence, the author’s modifica-
tion of the theories by van Wijk, Vos and van
Stralen [22], Scriven [30] and Bruijn [29],
for bubble growth in binary mixtures (including
pure liquids, evidently) is extended to the more
complex case of time-dependent liquid super-
heating. This theory is leading to a new approach
of the mechanism of nucleate boiling by con-
sidering periodic bubble generation as a
relaxation phenomenon of the superheating of
the thermal boundary layer at the heating
surface. This thin liquid layer is pushed away
locally (due to the radial motion of the bubble
boundary) from the heating surface during
rapid initial bubble growth and is surrounding
a part of the boundary bubble until departure
from the surface. Colder liquid at saturation
temperature is flowing to the nucleus and
heated during the delay time before formation
of the succeeding bubble.

At first, it was believed that the heat supply
to a growing bubble at a heating surface
originated only from the thin thermal microlayer
at the base. However, this conception resulted
in discrepancies from experimental growth data.
The next approach proved to be correct;
heat inflow was assumed to occur through a
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spherical segment with height H* = 2b*R* of the
bubble boundary. The bubble is assumed to
be a spherical segment, the height H of which
was also taken as being proportional to the
instantaneous bubble radius: H = 2BR¥*, ie.
the ratio of the effective part of the boundary
to the whole bubble area was taken as constant
during entire bubble growth at the heating
surface, up to the instant of departure. The
value of the constant ‘“‘wetting parameter’ is
shown to be B = 0-75, which is attributed to
the imperfect wetting of the heating surface
by the liquid. The angle of contact o = 7/3
corresponding with this value of B could be
calculated from

2BR* — R*
TRE )

and is in good agreement with the experimental
value.

Afterwards, this mechanism-—which was sug-
gested by making a comparison of the author’s
originally incomplete theory [31, 4] and experi-
mental bubble growth [35, 39, 60, 31 }—proved
to be in good agreement with recent shadow-
graph studies by Béhar and Séméria [43] and
by Brauer [44]. Béhar and Séméria made ob-
servations of the removed hot boundary layer
from high-speed schlieren motion pictures.

Brauer [44] deduced large temperature gra-
dients from colour schlieren photographs in the
liquid adjacent to vapour bubbles, which were
generated at a vertical heating rod. The deflected
light rays were incident upon narrow coloured
glass strips. The colour of the transmitted glass
strip is a measure for the angle of deflection and
hence also for the relative temperature gradient.
Grigull [68] found, when boiling water on a
heated mercury surface, that a thin mercury
skin is originally ascending with the bubbles,
before descending under gravity.

It may be noticed here, that both the effects
of wetting (due to interfacial tension resulting in
a fixed angle of contact), and nucleation proper-
ties of the heating material are included in the
theory. The well-known independence (Averin

cos o = =2B -1
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[16], van Stralen [15] and Rallis and Jawurek
[59]) of the peak flux from the shape of the
nucleate boiling part of the boiling curve, which
is determined by the nucleation function, is also
obvious now.

1.7 Advantages over previous treatments

Previous suggestions of the mechanism of
nucleate boiling, e.g. the semi-empirical corre-
lations proposed by Jakob [32, 33], Rohsenow
[64], Kutateladze [65] and Zuber and Tribus
[66, 67] predicted lower nucleate boiling peak
flux values in binary mixtures in comparison
to the pure less volatile component, thus being
principally incorrect. Contrarily, the peak fluxes
predicted by the new theory are in quantitative
agreement with experimental data. Hence, both
nucleate boiling peak flux densities, and the
composition of the binary mixture at which the
maximum peak flux occurs, can be calculated
now.

The differences and similarities of the present
theory with Madsen’s [49] and Han’s [55]
approach for pure liquids are obvious. Also, the
author cannot agree with Madsen’s interpreta-
tion of the large temperature dips (up to 75 degC
in water) observed during stable film boiling,
which he suggests to be caused by droplets, or
filaments torn from the stable liquid surface,
breaking through the protecting vapour film and
touching the thermocouple. This conclusion is
disproved by high speed motion pictures taken
by Westwater and Santangelo [69, 70] on boil-
ing methanol, and by van Stralen [72] on
ethanol. The fluctuations must be due to the
relatively large thermal diffusivity of the thin
vapour film, through which a sudden tempera-
ture jump is travelling nearly undamped.

Han [55] (cf. also Rohsenow [56]) made no
distinction between the equivalent liquid ther-
mal conduction layer d, = A1 — 1l/e)d, =
43/m*(1 — l/e)(at,) = (4/m)(1 — 1/e)(mat,)?,
c.f. Part I, at the heating surface, and the thick-
ness d, = (n/3)*(at,)* of the equivalent conduc-
tion layer surrounding a “free”” vapour bubble
in a pure liquid at the instant of departure.
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Moreover, the heat flow must then in both
layers be directed to the liquid, which applies only
to condensation and not to growth of bubbles.

1.8 The present investigations

At present, initial growth rates of vapour
bubbles generated on horizontal platinum heat-
ing wires are studied both theoretically and ex-
perimentally in water, in 41 wt. 9% methyl-
ethylketone in water, and in 1-59% and 6-0 wt. 9/
1-butanol in water, all boiling under atmos-
pheric pressure. In addition, both the bubble
delay time, frequency and departure size, and
the mass fraction vaporized at the heating sur-
face, are investigated resulting in an expression
for the peak flux density.

In the near future, the dependence of the peak
flux on initial rapid bubble growth and subse-
quent condensation rates in ‘“‘surface” (or
“local’’) boiling to subcooled mixtures, will be
studied. Higher condensation rates in mixtures
are predicted and compared with results of
Volmer and Flood [73-75] and Froemke,
Bloomquist and Anderson [76] on condensa-
tion of supersaturated water—ethanol and water—
methanol vapour mixtures, respectively. More-
over, the effect of pressure on peak flux will be
discussed separately.

2. GROWTH OF VAPOUR BUBBLES AT CONSTANT
LIQUID SUPERHEATING
2.1 Introduction
The growth rate of a vapour bubble, which is
generated at a superheated heating surface can
be derived theoretically on the following assump-
tions:

(1) For convenience, we assume the bubble to
be surrounded by a thin boundary layer
with thickness d,, through which heat is
transmitted by conduction only, ie. the
temperature gradient must have the same
value throughout the layer. Strictly speak-
ing, however, this is not necessary, but
only the weaker condition that the tempera-
ture gradient at the bubble boundary
equals 3,/d,, has to be satisfied.
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(2) The dew temperature, denoted by T, of the
saturated vapour in the bubble space is
uniform due to the large thermal diffusivity
of the vapour, independent of time.

(3) The initial (liquid and surface) temperature
in the neighbourhood of the generating
nucleus is denoted by T + &, ie. the
superheating is 3,.

{4) The heating surface is initially covered with
a conduction layer with thickness
d, = k/h, = kSy/q,, in which the initial
temperature at zero time decreases linearly
from T + 3, at the heating surface to
T + ASY,.

(5) The small superheating of the bulk liquid
A3, is constant outside the boundary layer
at the heating surface.

(6) The radius R of the (spherically symmetric)
growing bubble in a superheated liquid
of uniform superheating 3, is given as a
function of time ¢ by the expression:

R = Cl\got%

where C, is called the growth constant in
accordance with Plesset and Zwick [28,
31}, Forster and Zuber [27, 31], and
Scriven [30, 31].

(7) The growth of the bubble is due to the
simultaneous cooling of an adjacent super-
heated liquid microlayer surrounding a
part of the bubble boundary. This micro-
layer has a uniform temperature T + 8§,
where 0 < § < 8. with the initial condi-
tion: 3 = 3, for ¢ = 0; the thickness of the
layer is denoted by d(t).

The assumptions (1), (2) and (6) are in agree-
ment with the theories by Bo$njakovi¢ [77],
Forster and Zuber [27], Plesset and Zwick [28],
Bruijn [29] and Scriven [30] and with experi-
mental results by Priiger [78], Dergarabedian
[34] and van Stralen [31, 4], the assumption (5)
agrees with experimental results by Jakob [32,
33}, assumption (7) refers to Section 3; it
will be shown there that the temperature of
the adjacent liquid microlayer decreases rapidly
during the time t, of adherence of the bubble to
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the heating surface, and increases gradually
during a delay time t, after which the succeeding
bubble is generated on the same nucleus. This
result is in agreement with the periodic tem-
perature fluctuations at the heating surface
which have been observed by Moore and Mesler
[46] and other workers.

2.2 Free bubbles

2.2.1 Pure liguids. The radius R of a free,
spherically symmetric growing vapour bubble,
the boundary of which is entirely surrounded by
an infinite volume of superheated liquid with a
uniform superheating 8, can be derived from
the heat flux density equation :

o] 09 3 dR
A—l-- k(b?)rzk = k;{;— pZIav (3)
where the bubble area:
A, = 4nR%, 4

The thickness d, of the surrounding boundary
layer of liquid, through which heat is transmitted
towards the bubble by thermal conduction,
amounts to {28, 31]:

+
d,,:(g) @p=2-X o2 % , s

p2IC, p2IC,
where for abbreviation:
u =t (6)
The thermal diffusivity of the liquid
a-* (7)
/e
By substitution of (5) in (3) it follows:
dR k3, 3V Ok
==\ I (®)
dt  p,ld, n] pylatu

whence the bubble radius is expressed by the
growth equation:

k) 3
R = (B) Mgoﬁ =
s pal

12\ &k
(;C*> palat Sot* = C,Jou = Cau, (9)



FiG. 3. Water-methylethylketone and water~1-butanol, Photographs, showing slowing down
of bubble growth and decreased bubble size at instant of breaking away from 200 p—diameter
platinum heating wire, in 4-1 wt. % methylethylketone (2), and in 1-5%; (3) and 6-0 wt. %,
I1-butanol (4) in comparison to water (1). Heat flux density in nucleate boiling ¢, = 45 < 104
W/m2.

Bubble clusters occur on complex nuclei in 6:0% 1-butanol. Bubbles in mixtures leave wire
perpendicularly, i.e. sometimes downwards. A 2-mm scale is visible at the bottom of the

photographs.

[ facing p. 03015}



FiG. 4. -5 wr. ¢, I-butanol. Growth during adherence and subsequent growth afier departure
of vibrating vapour bubble a, cf. Table 1. The bubble is oscillating about the spherical shape.
Most important mode of vibration is the slowest, fundamental harmonic, in which a sphere is
transformed periodically into a rotation ellipsoid. Higher modes of vibration can also be
observed.

Number - number of frame, frequency 3400 frames per sccond. Frame No. 0 shows no
bubble on the nucleus. A 2-mm scale is visible on the bottom of the first four photographs.
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since R = R, for t = 0, a value of the order of
107°-107% m, cf. equation (43), which can be
neglected.

The coefficient

12\* (kp,c)?
C, = (_) (kpyc)
7 pal
shall be called the growth constant, since C, is
independent of 3,4, and

C, = Gy (11)

is called the growth factor which determines
actual growth rates of bubbles in a boiling vessel.

2.2.2 Binarymixtures. Therate of bubble growth
in a pure component depends on heat inflow
towards the bubble boundary to satisfy the heat
requirement of evaporation. In mixtures, the
heat diffusion is linked with mass diffusion of
the more volatile component. A lower mass
diffusivity of the more volatile component results
in a decreased bubble growth.

The growth equation (9) is also valid for binary
mixtures. However, the growth constant C, for a
constant liquid superheating depends then on
the concentration of the more volatile com-
ponent according to:

(10)

12\* D?
Ci = ) p, ((D\? AT] ~
F0ic:

P (\4 G,
12\* a
()= T, (ayary
P (€ D} G,
where
AT dT
Gr —xo(K — 1) (a)c:xo (13)

It is seen from (12), that C, shows a minimum
(i.e. bubble growth is slowed down) in coinci-
dence with a maximum in AT/G,; usually
occurring at a small concentration of the more
volatile component. The concentration of this
maximum can be derived from equilibrium data,
cf. (13). Equation (10) is a special case of (12),
since the increase in dew temperature of saturated
vapour, AT, is zero in a pure liquid (Fig. 2).
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2.2.3 Comparison with experimental results.
Theoretical bubble growth predicted by equa-
tions (9) and (12), respectively, is in quantitative
agreement with experimental results (at atmos-
pheric pressure) by Dergarabedian [34] for
water at various liquid superheatings; by van
Wijk and van Stralen [35, 60, 5] for the binary
system water—methylethylketone, cf. Fig. 3, by
van Stralen [39, 60, 5] for water—1-butanol, cf.
Figs. 3 and 4, and by Benjamin and Westwater
[38, 70, 7] for water—ethyleneglycol.

2.3 Growth for partial heat supply

2.3.1 Bubble is a sphere with radius R. If heat
is supplied to the bubble boundary only through
a spherical segment of height

H* = 2bR, (14)

where b = constant, with0 < b < 1, i.e. through
the area

A, = 2nRH* = 4nbR?* = bA,.

Equation (3) has to be extended to a more general
expression for the heat flow:

3o dr
70 _ A, p,] —
d, 1P2 dr’
whence the right-hand side of the bubble growth
equation (9) must be multiplied here by a factor
b, which decreases the growth of the bubble:

R = bC,9yu = bC,u. (16)

2.3.2 Bubble is a spherical segment with radius
R*, The more general case will now be con-
sidered of partial heat supply to the boundary of
a spherical bubble segment with height H =
2BR*. Heat is transmitted only through a
spherical segment with height H* = 2b*R*,
where b* = yBand y < 1 (Fig. 5). The “wetting
parameter” B and the “microlayer parameter™
b* are both assumed to be constant. The im-
perfect wetting of the heating surface is incor-
porated in the theory. Time-independence of B
implies a constant wetting angle and thus geo-
metrically similar bubble growth during ad-
herence to the heating surface.

® = Ak (15)



1008

The required heat for vaporization is supplied
by conduction towards a part of the bubble
boundary, analogous to equation (15):

pzldd—? = 47tb*(R*)2k—3§
with
V, = (n/3)H*(3R* —~ H) =
(4n/3)B*(3 — 2B)(R*),
whence:
p,IB*(3 — 2B)% = b*ki—z

A factor b*/B%(3 — 2B) = y/B(3 — 2B) is intro-
duced in the right-hand side of (16) instead of
b*. In the special case of heat supply towards
the entire boundary of the spherical bubble
segment, i.e. b* = B, this factor is reduced to
1/B(3 — 2B), in accordance with Donald and
Haslam [79].
The equation for the wetting parameter B is:
*
TIZ“‘“‘ =b,
B*(3 — 2B)
or
2B — 3B + L =0,
b,
where b, denotes the experimental factor result-
ing from the bubble growth equation at the
instant t, of departure. The quadratic equation
has a unique solution B = 0-75 (corresponding
toa fixed angle of contact « = =n/3, cf. equation (2)
and 1.6) only as y = gb,, i.c. the value 0-89 is an
upper boundary for b,, cf. Table 1. For instance,
for water b, = 0-70, whence b* = gb.B = 0-59,
and for 4-1 wt. %, methylethylketone b, = 0-895,
whence y = 100 and b* = B = 075. The
generalization of (16) results in a factor 3%b*
instead of the original factor b* for a sphere
(perfect wetting), whence

R* = 33b*C,Su

The volume of the spherical segment amounts
to:
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4
V=T BG - B)RY = T HRY =

4n
— R3,
3
where the radius R of the equivalent sphere with
equal volume is defined by:

R = %)}R* = (%'%)ib*cllgou = bClsolt,

ie. formally, equation (16) again, but with a
different meaning of the factor b. In case of a
spherical bubble b = b*. For a spherical seg-
ment, however, the “bubble growth parameter™
b is related to the microlayer parameter b* ac-
cording to:

b*
b= e = 33)%* = 112b*.
{B*3 — 2B)}* 3% b
Liquid
"“Vapour
. bubble
H' 26°R] H=2BR"
R <(28-UR*
Wall

R .

FiG. 5. Partial heat supply to spherical bubble segment.

P

It is striking that the contact angle occurring
during the dynamic bubble growth at a heating
surface is predicted to be independent of inter-
facial tensions, which determine the static
behaviour of liquid drops on plates. In fact, how-
ever, the numerical value of the parameter b* is
of minor importance in comparison to that of
b. A value of B # 0-75, if actually occurring,
should result in a different ratio b/b*. This can
be incorporated in the theory by admitting values
of the discriminant of the quadratic equation in
B, which are > 0.

The area of the spherical bubble segment,
through which heat is transmitted to the bubble,
amounts to
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A, = 2nR*H* = 4nb*(R*? =
{B*3 — 2B))*
(B°G — 2B)}*

i.e. exactly the same expression as for a sphere.
This justifies the theoretical picture, in which
growing bubbles at a heating surface are re-
placed by free spherical bubbles with partial
heat supply.

During the last stage of adherence, the area
of contact between the vapour in the bubble
space and the heating surface diminishes gradu-
ally to zero at the instant of departure, justifying
the proposed theoretical picture. Meanwhile,
cold liguid of the bulk is already rushing in to
the outer part of the contact area, which was
previously covered with vapour. This explains
why the theoretical ratio of the delay and de-
parture times exceeds the experimental value,
of. Part II. The value of the parameter b in the
extension of (16) has been derived from the ex-
perimental values R, , and u; , = i, at the
instant ¢, , of departure, ie.

4z bR? = 4nbR3,

b = ERl,ez/CISOuI,e:

cf. Table 1. It is shown that this value of b, which
has been determined at one instant only, holds
for the whole period of adherence, cf. Fig. 7;
i.e. the growth rate of bubbles at a heating sur-
face equals that of free spherical bubbles with
corresponding partial heat supply. This state-
ment is even valid for vibrating bubbles, the
shape of which is transformed periodically into
a rotation ellipsoid (Figs. 4 and 7).

2.4 Coefficient of heat transfer to a bubble

The coefficient of heat transfer to a free vapour
bubble can be derived from equations (3) and
9):

h o= - oo e o e — = %ple‘u'l. (1?)

This expression holds also in case of partial
heat supply as d, is independent of b.
3ar
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3. BUBBLE GROWTH FOR TIME-DEPENDENT
LIQUID SUPERHEATING

3.1 Importance for the region of nucleate boiling

This case is of extreme practical importance,
since it occurs actually for vapour bubbles, which
are generated at a heating surface in the region
of nucleate boiling. Generally, the superheating
of the surface 9, (and the adjacent thermal
boundary layer, of which the thickness 4, is of
the order of 10™* m = 10 pjamounts to approxi-
mately 10-40 degC. The equilibrium bubble
radius R, is then approximately 1 u, whence
extremely high initial growth rates are predicted,
in good agreement with experimental results
[35, 39, 60, 31]. Subsequent bubble growth after
release is much slower due to the small (uniform)
superheating A8, of the bulk liquid, which is of
the order of 0-1 degC.

3.2 The new approach of the mechanism of
nucleate boiling

The formation of vapour bubbles on a nucleus
in the region of nucleate boiling (or at the liquid-
vapour interface in film boiling) is attributed here
to a periodic heating and cooling of a thin
liquid microlayer (with height H* = 2bR and
thickness d) of uniform superheating 3. Conse-
quently, the theory of relaxation phenomena,
which is well-known from mechanical vibrations
and electrical circuits, can be applied here to
describe the time-dependence of the tempera-
ture.

At first sight, Newton’s cooling law with the
solution

§ = 8, exp (—1/7), (18)

where t denotes the relaxation time (or time
constant), seems to give a suitable starting point.
However, the situation is somewhat more com-
plex than in the simple case where Newton’s
law holds, since both the coefficient of heat
transfer, cf. equation (17),and the ratio of the heat
capacity of the microlayer to the area of contact
surface depend on time here. The height of the
superheated microlayer adjacent to the bubble
is assumed to increase linearly with the bubble
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radius, cf. Section 2.3.2. Consequently, super-
heated liquid should rise together with the grow-
ing bubbles at the wall. This is exactly what is
shown in recent shadowgraph studies, cf. Section
1.6.

3.3 Validity of the bubble growth equation in case
of partial heat supply

A spherical vapour bubble in a superheated
liquid is a moving spherical surface heat sink,
which can be found by integration of an expand-
ing instantaneous point sink.

The extended Rayleigh equation of motion
can be written here, according to Forster and
Zuber’s [27] derivation of equation (9), cf. also

[31]:

d’R , (dRY?
R'&?”(ﬁ?) =

_pal pal _
o, T |(12/n)*p,ca® 2

The hydrodynamic terms in the left-hand side
and the last term in the right-hand side of this
equation are time-dependent,evenfor § = 3, =
constant. These terms are proportional to ¢!
and t™ % respectively, and hence vanish for
relatively large time.

At atmospheric boiling point, and e.g. for
3 = §, = 20 degC, the order of magnitude of the
left-hand sideis 10~ 't~ ! to t~ ! m?/s?, and of the
last term in the right-hand side 10t~ % to 102t 7%,
m?/s%. The coefficient of the term between
brackets in the right-hand side is then of the
order of magnitude of 10° to 10° m?/s? degC.

Already after a few microseconds, equation
(19) can thus be simplified to:

20
38 — — (19
} 2 )

I2\? t
c, = (3) ol g _ s, o)
7 pal
or for partial heat supply:
= bCu = bCSu, (21)

i.e. equation (16), provided that 9 changes rela-
tively slowly with time, such that the first term
in the right-hand side of equation (19) remains
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large in comparison with the other terms. This
condition is satisfied here, cf. equation (26).
Equation (16) can also be derived from
Scriven’s equation [30], which is valid for
relatively large superheatings, cf. also [31]:

9 = :0.2.! T %_C_% = LoF!
0 \3) 2at  C/
which yields equation {21).

3.4 Boundary conditions and temperature of the
microlayer

For the present, the relatively slow subsequent

bubble growth after release shall be neglected.
As a consequence, the following boundary con-
ditions are introduced:

(1) The coefficient of heat transfer to the
bubble A(t;) = 0 at the instant ¢,, at which
the bubble departs from the heating sur-
face, in good agreement with experimental
data, cf. Fig. 7. The departure radius of the
bubble is denoted by R(t,) = R,, and
u, = t}.

(2) 3 = 9y fort = 0, i.e. the initial superheat-
ing of the microlayer equals the super-
heating of the heating surface.

The first condition is equivalent with

Ry _ 4R\ _
dt foey,  \du /e,

We assume the validity (for arbitrary u in the
interval 0 < u < u,) of the following expression
for the coefficient of heat transfer to the bubble:

1 ]
h(u) = %lecl(u - ;:)

This function satisfies the first boundary condi-
tion. The initial values of # are only slightly
diminished in comparison to those following
from equation (17), since A(t) — oo for ¢t — Q.
The superheating of the microlayer $(u) is
determined by equations (22) and (21):

1 I .l dR
h U § [C [ :_Z—M:
(w) = 3p, 1<u u,) b3 dt
pzl_lwdR . 1 1d8
b9 2u du (u + 585) @3

(22)

= 720200,
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whence 3 follows from an ordinary differential
equation of the first order:

1d3 1
Sdu = Tuy @4
The general solution of this equation is
u
3 = D, exp (——). (25)
Uy

The constant of integration D, follows from the
second boundary condition, which yields:

3 = §, exp (_ui)
1

3.5 Equivalence of equations (22) and (26)

Conversely, assumption of the validity of
equation (26) can be shown to be equivalent with
the expression (22). Assuming

9 = 9o exp (—fru) (27)

with f, = constant, yields in combination with
equation (21)

(26)

dR
= e~ fou), (28)
whence
_pl1dR 1
= P9 2udu 20,1C4 M - L) (29)

The first boundary condition yields f;, =
1/u,, simplifying equation (27) to equation (26).

3.6 Derivation of the bubble growth equation (21)
from equations (27) and (29)
The bubble growth equation (21} can also be
derived from equations (27) and (29), since

1 p.l 1 dR
-1 i S i
h= 2pzlc’(u fz) b9 2u du’
whence
dR
an = bC 8o(1 — fou) exp (—fou),
with f, = 1/u,, cf. the first boundary condi-
tion.
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Integration yields:

R = bC,S,u exp (—-uﬁ) = hC,Su.
1

This means, that each of the three equations for
bubble radius, superheating and coefficient of
heat transfer, respectively, depends on both re-
maining ones. However, comparison of theoreti-
cal predictions with experimental results can be
restricted to bubble growth, since both the super-
heating of the microlayer and the heat trans-
mission to the bubble are then determined at the
same time. The time-dependence of the super-
heating can be checked separately with Moore
and Mesler’s and Madsen’s curves.

3.7 Extended Newton’s cooling law
The well-known differential equation for the
cooling rate of the microlayer adjacent to a

vapour bubble is:

d3
—C— = hA,S,

C & 29 (30
where the heat capacity C = Vp,c, the volume
V = A,d = 4nbR*d, and d = thickness of the

microlayer.
Hence, equation (30) is simplified here to:
d9 h
“a T pad” (31

One can check now the total amount of
latent heat of vaporization which is supplied
from the cooling microlayer to the vapour
bubble during the time of adherence to the
heating surface, before the bubble breaks away
with a radius R, at the instant ¢, :

£ Uy
AHQ = jhAzS dt = pzlj 47{R2bC130
0 0

R,
= pzlj 4nR?*dR = ? p,IR3. (32)
[¢]
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Also, h 8 h P2l
! = - ——=——2uu; = — Cy(u, —u),
4n s Plcgfi pac
hA,3dt = —3-ple dt (33)
0 whence the maximum value of d, cf. Fig. 6,

for any value of t during adherence, ic. for
0 < t < t,. Consequently, the instantaneous p,l

value of the remaining part of the excess do = d(0) = ;;CCI“I’ (34)
enthalpy (with initial maximal value AH,)

stored in the removed relaxation microlayer, and
amounts to: dit,) = 0.
4n 3 4n 3 3 For a pure component
AH(t) = AH, — szlR = ?pzl(R1 — RY). ,
12
dy = (—~> atu, (35)

3.8 Thickness of the microlayer
The thickness of the microlayer follows from The various quantities are shown graphically

equation (31): in Fig. 6.

1
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FiG. 6. Bubble radius R, coefficient of heat transfer h to bubble,
thickness d, of equivalent conduction layer around bubble, and
superheating 3, thickness d and volume V of relaxation microlayer
during adherence to heating surface.
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3.9 Volume of microlayer
The volume of the microlayer (cf. Section
2.3.2) amounts to:

V = dnbR?d = 4nbd P2 392
p1c

X uuy — u)exp (~2£-), (36)

1
whence dV/du = Oforu = 0,u = {u, (maximum,
cf. Fig. 6)and u = 2u,. The maximum volume of
the microlayer occurs for t = %f, (Fig. 6) and
amounts to:

~ e pl o,

R 84

= 2nbed,RE.  (37)

3.10 Thermal boundary layer
The thickness d,, of the equivalent conduction
layer around the vapour bubble is:

k_ 2k
h o pIC(Lju — 1/u,y

whence d,(u) - o asu — u,, cf. Fig. 6. However,
this is not disturbing, since the physical meaning
is that the temperature gradient at the bubble
boundary, which equals $/d,, vanishes at the
instant of release. For free bubbles equation
(38) simplifies to:

2k AN
- = +
dy, = IC, u (3) {at)*.

3.11 Average values of d and h

For the purpose of comparing theoretical
predictions with Madsen’s and Moore and
Mesler’s values, the average values d and h
are calculated from equations (33) and (22),

df;.:

(38)

(39)

respectively:
i3
— i pzi j pgl
d=—-—"=C —thdt = u, = id,,
I, prc t Yppc T
0 (40)
and

E = —pzfc j(t _ tl %} dt = §p2fC1‘ai -
(41)
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3.12 Initial bubble growth
The initial bubble growth follows from equa-
tion {21} by taking ¢ — 0, whence:
R e RQ = bCISOu, (42)

where the (small) equilibrium radius follows
from the Clausius—Clapeyron equation :

20T
Ro= p219 43
and the initial growth rate
dR
5 = PCSu! (44)

3.13 Discussion of bubble growth equation (21)
The bubble radius R, at the instant of
release is predicted from equation (21) to:

b
R, = gcxso“n (45)

whence: (i) R, increases linearly with the super-
heating of 8, of the heating surface in the region
of nucleate boiling, if the time ¢, of departure is
assumed to be a constant.

{ii} R, is proportional with the growth con-
stant C;, ie. R, and C, show a minimum at the
same concentration of a binary system, if ¢, is
independent of concentration, cf. Part II of
this paper. This explains the observed coinci-
dence of minimum bubble size, minimum bubble
growth and maximum peak flux density in
nucleate boiling [31].

(iii} Evidently equation {45) shows no prefer-
ence for any direction, particularly not for
gravity. Consequently, previous equations at-
tributing bubble release to equilibrium of
buoyancy and the action of surface tension,
must be considered to be unreliable. Originally,
all bubbles leave the heating surface perpendicu-
larly. Actually vapour bubbles have been ob-
served, in binary mixtures, which leave a hori-
zontal heating wire downwards, cf. Fig. 3.

3.14 Comparison with previous theory
A semi-empirical treatment has been given
previously by the author [31], predicting for the
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bubble radius at the instant of release:

1
Rl_n-!—l

CSquy, (46)
where the parameter n = 3 for all bubbles gener-
ated on ‘“ordinary” nuclei, ie. independent
nuclei at relatively large mutual distances, and
n =7 for “complex’ nuclei, i.e. nuclei at distances
which are of the same order of magnitude as the
bubble radius, cf. Section 3.17.

For ordinary nuclei 5 = 0-70 whence bje =
0-26, which is in accordance with n = 3. The
reader is referred to Fig. 7 and the original
publication [31], where the good agreement of
experimental and theoretical values following
from equation (46), and hence also from equation
(45), is shown for vapour bubbles in water, and in
water—methylethylketone and water—1-butanol
mixtures.

3.15 Correction on the bubble growth parameter
due to the superheating of the bulk liquid

As a matter of fact, one has to take instead of

equation (21) for growth of bubbles adhering to
the heating surface:

b Ci(8 — ASglu + C;ASyu,

where A3, denotes the constant superheating of
the bulk liquid, and

9 = 3, exp (_ul)
1

Consequently,

b
Rx = “"e'l’Cngul + (1 - bx)CIA\ggul =
by
Ciul{’; !90 + (1 - bl)ASO} (47)
It is seen from equations (45) and (47) that
%
1 90 .

In general, the values of b and b, differ only
slightly, since A3, < 8;;e.g for 3, = 20 degC,

b=b, +el —b (48)

S. J. D. VAN STRALEN

A8, = 03 degC and b = 0700, one has b, =
0-687, i.e. a correction of not more than 2 per
cent which can be left out of consideration.

3.16 Comparison with experiment for some vapour
bubbles in water

A comparison of the theoretical value follow-
ing from equation (45) by taking R, , = R, ,
yields: b = 070 for water, cf. Table 1. This
proves the validity of the assumption, that an
updraught of hot liquid adjacent to the bubble
boundary is occurring during the time of ad-
herence to the heating surface; the major part
47bR? of the total bubble area 4nR? is surrounded
by the superheated microlayer, which is cooling
rapidly during bubble growth.

The agreement between theoretical and ex-
perimental growth during adherence is also
excellent, cf. Fig. 7, even better than with the
equation derived previously [31].

This means, that the assumption of the validity
of equation (26) for the superheating of the
microlayer is justified. Hence, the same value
b = 070, which is obtained by making a com-
parison at the instant of release ¢, is also valid
during the whole time of adherence. The height
H* = 2bR of the microlayer is increasing then
proportionally with the bubble radius.

Hospeti and Mesler [80] observed an increase
of R, with §,, which is also predicted by theory,
equation (45), for vapour bubbles on a heating
surface in water. However, quantitative informa-
tion has not yet been presented. The author’s
future research includes experiments on the
same subject, for various pure liquids and binary
mixtures boiling at different pressures.

3.17 Complex nuclei

It has been shown previously [31], that a
distinction has to be made between “ordinary”’
and ‘“‘complex” nuclei, the mutual distance
between the latter being of the same order of
magnitude as the bubble size at departure. A
high local density occurs of small bubbles
generated at very high frequencies on complex
nuclei in certain binary mixtures only (Section
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FiG. 7. Water. Theoretical growth curves during adherence according to equations

(21) and (26):

R = bC,9,t* exp —(t/t,)*

and according to previous theory [31]:

R = 025C,(po — Aol — {1 —(¢/1)}}*]e} + C1A@ott (——-)
in comparison to experimental data for bubbles a (O, @) and b (A, A) with
8¢ = 20 degC and A3, = 0-36 degC and bubble ¢ (], l) with 9, = 12 degC

and A3, = 011 degC, cf. Table 1.

The subsequent growth after departure follows from : R = R; + C,A8,(t* — t}).

1.5). Bubble growth during adherence on com-
plex nuclei can obviously be described by re-
ducing the growth constant to half its normal
value, i.e. by taking:

Cl,c = O'SOCLM.

This relation follows from the geometrical
pattern, showing that each bubble boundary has
a neighbouring liquid-vapour interface of equal
area with competitive consumption of the more
volatile component.

Apparently, the reduction in bubble growth
rate on complex nuclei can also be attributed to a
decrease in local superheating 3,, which is
lowered continuously due to the action of
neighbouring bubbles, cf. equations (9) and (12).
Formally, one has to replace 3, then by the
average value for an individual bubble:

(49)

u
uexp | ——
Uy

0

1
§=ij9m=2%
ty ty

(2 1 - %)90 = 0533, (50)

3 isindependent of t; and has obviously the same
value for all complex nuclei. The growth para-
meter b = 068 for complex nuclei (Table 1),
whence the factor 2(1 — 2/e)b/e in the right-hand
side of equation (45) is then 0-132, which is in
good agreement with the previous value 0-125,
cf. [31].

Thus the special behaviour of complex nuclei
with decreased bubble growth can be explained
satisfactorily both in terms of mass and heat

diffusion.
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3.18 The wetting constant

The value of b is obtained from equation (45)
by substitution of the experimental values t, ,
and R, ,. The same value of b holds for the entire
initial stage of growth of adhering bubbles, cf.
Section 3.16 and Fig. 7.

The instantaneous height of the removed
microlayer amounts to 2bR and thus to 2bR; at
the instant t, of bubble release. The values of the
wetting parameter b are shown in Table 1
(cf. Appendix). The average values are: 0-70
for water, 0-73 for all (14) bubbles investi-
gated on ordinary nuclei, 0-68 for complex
nuclei and 0-72 for both types of nuclei. The
appendix gives also data for bubbles in ethanol,
both in nucleate boiling and film boiling.

3.19 Comparison of the thickness of the microlayer
and the coefficient of heat transfer with
Madsen’s data [49]

The average values d and h, which have been
derived from equations (40) and (41) respectively,
are also shown in Table 1. For water d = 21 ,
in good agreement with Madsen’s value of
26 u,and b = 2:09 x 10* W/m? degC for heat
transmission to the bubble. Madsen’s value for
heat transmission from the surface is higher:
h, = 303 x 10* W/m? degC. Madsen’s values
are obtained from equation (18) by taking a
constant local surface coefficient of heat trans-
fer h,, and a constant relaxation time t = p,cd/h,,
in Newton’s law.
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APPENDIX

Experimental data on bubble growth at a
horizontal platinum heating wire (with a dia-
meter D, = 2 x 10~* m) are shown in Table 1
for a constant heat flux density q,, = 45 x 10*
W/m?, which means a moderate value in the
region of nucleate boiling. The maximum micro-
layer superheating for complex nuclei has been
replaced by the average value according to
equation (50).

The various bubbles are denoted with the same
letters as used in previous articles [31], where a
number of figures and photographs is showing
bubble growth, cf. also Figs. 3 and 4.

The average thickness d = 1d, of the micro-
layer amounts to: 21-1 p in water, 55 p in 4-1
wt. % methylethylketone, 13-0 p in 1-5 wt. %
and 86 p in 60 wt. 9 1-butanol.

The wetting parameter b is a constant during
the entire time of adherence to the heating sur-
face (Fig. 7), and amounts to 0-70 for bubbles in
water, 0-73 for ordinary nuclei, 0-68 for complex
nuclei and 072 for all bubbles investigated,
whence the factor b/e = 0-26 in equation (45).

The average value h of the coefficient of heat
transfer to the bubble is: 209 x 10* W/m? degC
in water, 047 x 10* W/m? degC in 41 wt. ¥
methylethylketone, 203 x 10* W/m? degC in
1-5 wt. % and 419 x 10* W/m? degC in 6:0
wt. % 1-butanol.

The quantity h3 is a measure for the heat flux
density towards the bubble boundary during
adherence. However, relatively large values for
complex nuclei correspond with relatively low
values of the rate of heat flow @ due to the small
bubble size, cf. the last column.

Some vapour bubbles have tentatively been
studied in ethanol, both in the regions of nucleate
boiling and film boiling. A coincidence of a small
bubble growth constant (C, = 9 x 10~* m/s?
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degC) and a relatively low peak flux density in
nucleate boiling (g, e = 46 x 10* W/m?)
occurs in this pure ligquid, in contrast to the
investigated 4-1 wt. %, methylethylketone mix-
ture (6 x 1074 m/s* degCand 172 x 10* W/m?,
respectively). The bubbles are becoming hemi-
spherical for increasing wire-superheating in
agreement with Hospeti and Mesler [80], ie.
b = 050 was found in film boiling at 3, ,, =

5. J. D. VAN STRALEN

290 degC and at an initial superheating of the
liguid microlayer of approximately 90 degC,
corresponding with a vapour film of 18 . This
value of the microlayer superheating is in ac-
cordance with Madsen’s temperature dips up to
75 degC in film boiling and is connected with a
large bubble radius at departure {23 x 10”*m
in comparison to 3 x 107* m for nucleate
boiling).

Résumé— Notre modification des théories de Van Wik, Vos et van Stralen, de Scriven et de Bruijn con-
cernant la vitesse de croissance de bulles de vapeur, sphériques libres dans des mélanges binaires surchauffés
uniformément a £t€ étendue aux cas plus complexes des bulles produites sur une paroi chauffénte avec
une surchauffe du liquide dépendant du temps, conduisant & une nouvelle description du mécanisme de

Pébullition nucléée.

Le flux de chaleur vers la bulle nécessaire pour fa vaporisation pendant la croissance rapide initiale
de la bulle a éié obtenu & partir de Penthalpie en excédent de la couche limite de conduction équivalente
sur Ia paroi chauffante. Cette couche limite thermique est périodiquement détachée de 1a paroi d cause de
ia production successive de bulles sur les noyaux d'ébullition. On a constaté la similitude du comporte-
ment de la surchauffe uniforme de la microcouche fluctuante avec un phénoméne de relaxation.

Les différentes interprétations des chutes rapides de température A la paroi chauffante, qui se produisent
3 la fois dans I'ébullition nucléée et I'ébullition par film et qui sont dues a la formation initiale de vapeur
ont &té discutées et on a également vérifié le mécanisme proposé avec des strioscopies provenant de la

littérature.

La croissance expérimentale des bulles adhérant & un fil chauffant en platine dans Peay, et dans des
mélanges ean-méthyléthylcétone et sau—1-butanol, est en accord gquantitatif avec la nouvelle théorie.

Zusammenfassung-—Die Modifizierung der Theorien von van Wijk, Vos und van Stralen, von Scriven
und von Bruijn, die die Wachstrumsgeschwindigkeit von freien, kugelférmigen Dampfblasen in einer
gleichformig liberhitzten Zweistoffmischung behandeln, wird durch den Autor auf den kompiexeren Fall
der Blasenerzeugung an einer Heizfliiche und einer zeitabhiingigen Flissigkeitsiiberhitzung ausgedehnt.
Das fithrt zu einer neuen Beschreibung der Vorgénge beim Blasensieden.

Der fiir die Verdampfung bej schoellem Blasenanfangswachstum nétige Wiirmestrom i die Blase
wurde aus der Uberschussenthalpie der dquivalenten, leitenden Schicht an der Heizfliche abgeleitet.
Diese thermische Grenzschicht wird von der Wand wegan des aufeinanderfolgenden Entstehens der
Blasen an den Keimstellen periodisch weggestossen. Das Verhalten der gleichférmigen Uberhitzung in
der fluktuierenden Mikroschicht wird dhnlich wie ein Relaxationsphiinomen festgelgt.

Die verschiedenen Auslegungen der schnellen Temperaturerniedrigungen an der Heizfliiche, die
sowohl beim Blasen-wie auch beim Filmsieden auf Grund der anfinglichen Dampfbildung auftreten,
wurden diskutiert und der vorgeschlagene angefiithrte Mechanismus wurde mit Schlierenaufnabmen aus

dem Schrifttum Gberpriift.

Das experimentell bestimmte Wachstum von Blasen, die einem Heizdraht aus Platin in Wasser, in
Wasser-Methyl-Ethylketon- und in Wasser~1-Butanolgemischen anhaften, stimmt quantitativ mit der
neuen Theorie Uberein.

AHHOTRIMI~~-ARTODONM BHeCEHH! MaMeHeHMA B Teopnu Ban Buiika, Boca u Ban Ulrpanena,
Crpusena u Bpiofitra pocra cBoSoaubix c)epHMecKUX HYSHIPBKOBR Hapa B OXHOPOIHO-
neperpeTstX OMHADHBIX CMeCAX. JTH HOHUSRUMM DasBUTH Ha (0Jee CHOMuBE CHOyHam
00pasoBanuA NYSHPHEKOB HA IOBEDPXHOCTH HATPEBA M TNEPerPeBa JKHAKOCTH ¢ TeUeHHeM
BpPEMEHH, UTO NPHBEAC K HOBOMY ONMCARUIO MEXAHN3MA NYIHPEKOBOIG KHACHHA,
HoauvecTpo Tenia, HeoOXOANMOTO JIA UCHAPSHMA B mepnod (HOTPOro HaYANBHONO POCTA
MySHPBKOB, NOACYUTHBAETCA N0 MBOHTOYHON DHTAMBHMH PKBUBAJEHTHOIO NPOBONAILEr0
CJI0A HA TIOBEPXHOCTYM HArpeRa, DTOT TeMIOBON NOIPAHUYHBIL CHON NMEPUOIMYECKM OTOABH-
raeTcA OT CTeHKM Ma-3a OOpA3OBAHMA OYepe[HHX NY3BIPLKOB HA HAPAX. VCTaHOBIEHO, YTO
KapTHHA OTHOPOTHOrC NEPErpeBa MYJLCHPYOUIEro MHKPOCTOA NMOAOGHA ABIEHHIO POAAKCE-

.,

Jaerca pasnminan WHTEPHpeTanuA CHCTPHX CHIKEHVA TEMIAPATYDH, NPOHCXONHIMX HA
NOBEPXHOCTH KMISHAA HAK HPH NY3HPPHOBOM, TAK ¥ NPHU NICHOUYHOM KHITEHNH ¥S-33 HAYAHB-
Horo napoolpasopanun. Ilpepnosenusil MeXauMaM NPOBEPEH ONTHYECKHM METOHOM HOJ0C
no GororpaduaM, 3aNMCTBOBRHNBM U3 JHTEPATYPH .

OKCHEePUMEHTAIbHEE aHHLE 0 POCTE NY3HPLKOB, NPHIMNAVMMX K ILIATHHOBON Harpe-
BaeMO#l NPOBOJIOKE B BOAE H CMECAX BOAA~METHJDTHIKETOH U BOAa-1-6yTaHos, HAXOIATCH B

HOTMYECTRENHOM COTJIacHM ¢ HOBOM Teopuel,



